Blog

March 1, 2017

PET for Pets

dog with fleece toy.jpg

Some of Cambridge Polymer Group's staff spent last Friday’s lunch hour working with polymers for a good cause. Unlike our usual analytical testing and contract R&D, this particular work did not require a lab. We braided polyethylene terephthalate (PET) into dog toys for PetsEmpower, a non-profit that fosters and reunites pets with survivors of domestic violence. The polar fleece toys will be given to animals during and after their foster experience. 

DogToysWithPET.JPG

PET - A Warm and Fuzzy Material 

From dog toys to astronaut underwear, polar fleece has infiltrated every aspect of our textile lives. It's hard to believe this ubiquitous fabric was invented as recently as 1979. Two factors contributed to polar fleece's widespread adoption. Firstly, extruded and then woven PET is a good replacement for wool; it is soft and warm, but not as scratchy as wool and certainly not as smelly when wet. Secondly, Malden Mills, the fabric's inventor and manufacturer, chose not to patent the new technology, allowing other vendors to make the wool alternative. Although originally seen as an outdoor material, garment makers quickly recognized polar fleece's potential benefits in applications beyond backpacking gear.

Polyethylene terephthalate is made by heating terephthalic acid with ethylene glycol (a.k.a. antifreeze). As the PET cools, it forms a viscous liquid. That liquid is then extruded through a nozzle, dried, and cut into plastic flakes. To make polar fleece, those flakes are heated and extruded through fine holes. As the liquid sprays out of the holes, it hardens into a fiber that is wound onto heated spools. In addition to making polar fleece out of virgin PET, it is also possible to use chopped up soda bottles.

PET Toys for PetsEmpower

The polar fleece toy is soft on the dog's mouth, yet strong enough to withstand some pulling. Since the fabric is machine washable, it doesn't matter how dirty it gets. These toys provide enrichment and chewing stimulation during and after the dog's foster stay.

Why is the foster stay necessary? Some domestic violence survivors are reluctant to leave abusive living situations because of what will happen to their pets; most human shelters do not allow animal family members. PetsEmpower finds foster families for those animals so that domestic violence survivors can access resources without worrying about the safety and comfort of their pets. Once survivors have reestablished themselves in new environments, they are reunited with their pets.

Cambridge Polymer Group is proud to support PetsEmpower. We are grateful to Polartec (previously known as Malden Mills) for providing the navy polar fleece for the dog toys and to Building Impact for supplying the other colors and for facilitating this warm and fuzzy volunteer opportunity.

Posted by CatherineCerasuolo
0 Comments
February 24, 2017

Cooling Polymer Sheets

Blazingsun.jpg

Warming from the sun occurs through the absorption of visible light and infrared light into materials whose molecular groups become energized at specific wavelengths, and the material warms. These molecules then can lose the energy by emitting it at different wavelengths, often in the infrared spectrum, cooling the material.

Passive Cooling

Creating surfaces that do not heat up as much has been a goal of material scientists interested in passive cooling systems, which are more cost and energy effective than active cooling systems like air conditioning and thermoelectric coolers.

Researchers have tried to make materials that do not absorb much infrared light, but are capable of absorbing heat from adjacent surfaces and then emitting the absorbed energy in the form of infrared radiation. Films of materials like this could be put on solar panels to drop their temperature to a level where they operate more efficiently, or could be used on the outside walls of buildings to reduce the internal temperature by a few degrees.

Cool as a Glass-Polymer Hybrid

Researchers at the University of Colorado-Boulder recently developed a composite structure made from a thin sheet of transparent plastic (polymethylpentene) which was infused with 8 micron glass beads. The sheet was coated on the back with silver. When put on another surface to be cooled, the silver reflected most of the visible light that contacted the sheet. The film also removed the heat from the underlying layer and reflected it in the mid-IR range. The glass beads act as IR resonators  to make them efficient IR emitters. The Colorado researchers estimate that the films can reduce the surface temperatures by 10°C and can be made cost-efficiently.

Posted by CatherineCerasuolo
0 Comments
February 23, 2017

Breathe Easy

BSL 4 Positive_Pressure_Personnel_Suit_resized.jpg

Biosafety Level 4 labs are used to study the deadliest pathogens known to humankind. In these labs, the scientists are garbed in protective suits that provide an external air supply and positive pressure throughout, to prevent inhalation and permeation of any airborne pathogens that may be present in the lab. The NY Times reported that the Center for Disease Control and Prevention recently discovered that the air hoses, composed of nylon, had never been properly tested to ensure that they were not releasing chemicals into the air stream that could potentially affect the scientist wearing the hazmat suit.

Lack of Cleaning Validation

To date, no one has gotten sick from the untested air hoses; the CDC discovered this validation omission as a result of a procedures and safety equipment audit. The current hoses were not designed for air transmission in humans, but were instead meant for carrying compressed air for power tools. Hoses designed for breathing equipment are tested for volatile components by the hose manufacturer or equipment assembly manufacturer.

Headspace GC-MS for Volatile Residues

Volatile residues from polymeric materials are often tested by head space gas chromatography with mass spectroscopy. CPG often performs this test to provide a risk assessment of potential elutable compounds from devices, particularly those devices that will be in contact with living tissue.

Posted by CatherineCerasuolo
0 Comments
February 16, 2017

Was the Mad Hatter Actually a Dentist?

Material Selection in Dental Fillings

MadHatter.jpg

So you indulged in a little too much holiday candy, and now need a cavity filled? There are several material choices, including amalgam alloy and composite resin.

Metal Amalgam vs. Polymeric Composite

If you had a filling prior to 1986, it was likely composed of an amalgam alloy, which is an alloy of mercury, silver, tin, and copper. The composition is carefully regulated by ISO 1559, to account for corrosion and dimensional changes. First used in the 1500s, amalgam remains a very successful material to this day, although concerns about its appearance and perceived issues with mercury toxicity have diminished enthusiasm for its use. Polymeric composite materials based on methacrylate chemistries have found greater use in restorative dental procedures, as these resins can be color matched to the native tooth. 

Put On the Gloves 

Earlier in the days of dentistry, some dentists would mix the amalgam in the palms of their hands, without gloves. Multiple studies have shown that dentists had higher levels of mercury in their bodies than the regular population. Mercury poisoning affects the central nervous system and the kidneys, resulting in tremors in the face and eyelids, and then affecting the limbs and handwriting. The regular use of gloves in dentistry is believed to have reduced issues with mercury accumulation in dentists, along with the increased use of non-mercury alloys and dental composites.

The Mad Hatter, by the way, is a reference to chronic mercury poisoning found in Victorian-aged hatmakers, which was used in the manufacturing of felt hats. Hatmakers of that era often had tremors, paranoia, shyness, and irritability.

Posted by CatherineCerasuolo
0 Comments
February 14, 2017

What Are Candy Hearts Made Of?

Sweetheart Conversation Hearts are an iconic symbol of Valentine's Day. First created by the New England Confectionery Company in 1902, Sweethearts are Necco Wafers cut in heart shapes and stamped with romantic messages. The recipe hasn't changed much since the early 20th century, but the messages are updated as popular vernacular evolves, and now include "Text Me" and "Tweet Me." Although Necco makes more than 8 billion hearts a year, some candy aficionados aren't impressed.

Complaints about Sweetheart's chalk-like texture abound throughout popular culture and the blogosphere. CPG scientists decided to characterize candy hearts to see if they deserve their chalky reputation. We examined the chemical composition, surface topography, flavor and odor of candy hearts, using SEM, EDS, and HS-GC-MS.

Not surprisingly, EDS analysis (see Figure 2) showed the candy consisted of carbon and oxygen, the two main elements in sugar (aside from hydrogen, which is not detectable by EDS). The spectrum showed a complete lack of calcium signal, indicating the absence of calcium carbonate (chalk) in the candy.

EDSSweetheartSpectrum.jpg

Read more in our Material Characterization of Candy Hearts application note.

Posted by CatherineCerasuolo
0 Comments
February 10, 2017

Just A Pinch of Salt Makes the Wheels Go Round

Nor'easter.jpg

As the Boston area cleans up after another Nor’easter (New England’s name for a blizzard), we considered the practice of salting roads during and after these winter storms. If you have observed this practice, you will first notice that the salt used on roads bears little resemblance to the salt on your dining room table. The latter is mostly sodium chloride (NaCl), with the occasional trace amounts of other salts that provide pink hues or subtle flavors, a trend more popular in recent times (region-specific salts). Road salt, on the other hand, is a mix of sodium chloride, calcium chloride, as well as other chloride-based salts (potassium, magnesium). Since sodium chloride is fairly corrosive to roads, cars, and plant life, calcium chloride is used in combination more often. Road salt is usually  blue or yellow in color. The actual salts used in road salt are all white. Manufacturers likely add a chemical indicator to provide a color tint, so that road work crews can see where they have salted.

The salts in road salt are highly soluble in water. When salt is placed in contact with ice, the local contact of the salt depresses the freezing temperature of the ice, which is normally 0°C (32°F). By freezing at a lower temperature, this means that the ice has to be held at a lower temperature to remain solid. For sodium chloride, this reduced temperature is -21°C (-6°F) under controlled conditions. Practically, sodium chloride will only melt ice when the roads are around -10°C or higher.  The application of salt is the same as locally heating the ice above its melting point.

What is happening on a molecular level is that the ions from the salt (say Na+ or Cl-) want to associate with the water molecules in the ice. In the thin layer of water that sits on top of the ice, salt ions are sitting in solution at a fairly high concentration. Since nature does not like a concentration gradient, it sends more H2O molecules from the crystal structure into the liquid layer to try to dilute the salt concentration. Aside from the solubility of the salt in water, the amount of melting only depends on the concentration of salt, not its chemical nature, which is why this process is called a colligative property (e.g. it only depends on the concentration of species, not their chemistry). Elevation of boiling point is another colligative property. So as long as the salt concentration remains sufficiently high, it will continue to melt the ice underneath, and make the drive through New England towns a bit safer.  

Posted by CatherineCerasuolo
0 Comments
February 7, 2017

From Catheters to Ski Boots: Polyether Block Amide Resins

PEBA 3.png

Highly engineered thermoplastic elastomers are finding broad application use these days. Traditionally, elastomers often involved silicones, polyurethanes, or crosslinked rubbers. For applications requiring greater mechanical properties, such as impact strength, modulus, and fatigue strength, block copolymers comprised of polyether amide (PEBA) are often found.

PEBAs are formed from the condensation polymerization of a carboxylic polyamide with a polyether (often a polyethylene glycol terminated by alcohols). Varying the relative lengths and amounts of the blocks results in a range of mechanical properties, including elasticity and energy damping.

PEBA in Sports Equipment

PEBAs are often used in sports equipment. Its fatigue resistance and relative immunity to temperature-related property change makes it a good candidate for the shells of ski boots, and the energy damping behavior and low density makes PEBAs attractive for the damping system in running shoes.

PEBA in Medical Devices

PEBAs can be injection molded and extruded, which permits forming into narrow wall constructs. This behavior, coupled with its biocompatibility and the lack of a need for plasticizers, has resulted in PEBAs use in catheters, tubing, and cannula.

Contact CPG for assistance in selecting polymer materials for your specific application. 

 

Posted by CatherineCerasuolo
0 Comments