Summary

CPG routinely performs accelerated aging tests on materials in a variety of environments to assess shelf life, in vivo performance, and to determine possible failure modes of materials and devices.

Description

Manufacturers usually need to set a shelf or operational life for manufactured devices, dictated by when the device no longer meets its required function. Rather than wait and test devices that have aged in real time, accelerated aging methods are often used to accelerate aging processes through the use of elevated temperatures and/or higher levels of oxygen or oxidizing species. Following accelerated aging, functional testing of the material or device proceeds to see if there is an unacceptable loss of properties.

CPG performs accelerated aging according to ASTM standards, employing ovens, pressure vessels, multiple gas environments and relative humidity, and has also developed aging conditions to mimic in vivo performance of medical devices, including gastric environments and permanent implant environments. Our full range of analytical testing can then determine if the material or device has changes in chemical or mechanical properties following the accelerated aging, even if those changes are localized to the surface. We have assisted clients in establishing shelf-lives of devices based on accelerated aging for regulatory submissions, and to test their devices under worst-case aging conditions.

Key Points

- Standard and custom accelerated aging
- Post-aging analysis
- Shelf life and in vivo performance
- Potential failure mechanisms due to aging