Hydrogels for Medical Applications
Past, Present and Future

Gavin Braithwaite

Cambridge Polymer Group, Boston, MA
Biological hydrogels

- Hydrogels are everywhere in nature
- Can be dynamic or permanent
- Diverse usage but mostly water

Polymer and Plastics in Medical Devices, SF 2013
Cambridge Polymer Group (2)

Images: http://web.mechse.illinois.edu/research/ewoldt/research.html; www.scq.ubc.ca; www.naturalheightgrowth.com
What are hydrogels?

- **Ferry**
 - “…a substantially diluted system which exhibits no steady-state flow.”
 - Chemistry of the polymer, locked in place by “crosslinks” and supported by water

- **Stabilization (crosslinks)**
 - Electrostatic (clays)
 - Associative (mucins and consumer gels)
 - Hydrogen bonded “crystals” (gelatin and PVA)
 - Chemical crosslinks (contact lenses)
Why are they so important?

- Hydrogels are
 - Water filled (>80% in most cases)
 - Permeable
 - Viscoelastic
 - Lubricious
 - Hydrophilic
 - Chemically diverse
 - Environmentally sensitive
 - Allow solute transport
 - Multi-functional
Production of hydrogels

- Controlled by chemistry of chain and method of crosslinking
- Chemical crosslinker
- Self-assembly
 - Dynamic and labile gels generally
 - Usually pronounced yield stress
 - Triggered by temperature or environment
Common chemistries

- A snapshot of common biomedical systems
 - Poly(HEMA): poly(Hydroxyethyl methacrylate)
 - Contact lenses, dressings, drug release
 - PEG: poly(ethylene glycol)
 - Injectables, drug release, scaffolds
 - PVA: poly(vinyl alcohol)
 - Contact lenses, nerve guides cartilage, wound dressings, reconstructive
 - PVP: poly(vinyl pyrrolidone)
 - Wound dressings
 - Poly(acrylamide)
 - Water “solidifiers”, tissue bulking, soil conditioner

- Other common hydrogels
 - Starch, agarose, pectin, gelatin, and many others
Past & current uses

- **Industrial**
 - Bulkhead seals
 - Waste clean-up
- **Consumer**
 - Hair-gel
 - Cosmetics
- **Medical**
 - Contact lenses
 - Drug release
 - Nerve guides
 - Coatings
 - Tissue bulking
 - Nucleus replacement

Polymer and Plastics in Medical Devices, SF 2013

Cambridge Polymer Group (7)

Images: www.mide.com; www.chemicalengineering.byu.edu
Where to next

• Current usage largely non-load bearing (even nucleus)
 – Drug release, scaffolds, guides, tissue bulking
• The body makes extensive use of hydrogels in the joint
 – Meniscus
 – Cartilage
 – Labrum
 – Intervertebral disc
• These joints readily compromised
 – Osteoarthritis
 • 27M people in US
 – Trauma
 • >800,000 meniscus surgeries annually
 • Accelerates degeneration
 • Associated with lesions
The trouble with the knee

• The human knee is a “simple” joint
 – Cylinder on flat
 – Contact forces 3-5x body weight
 – ~10 MPa normally
 • 30 MPa (stair) up to 50 MPa (lunge)
 – Kinematics
 • Rotation over 20°
 • Flexion up to 50°
 • Displacement 3-4 cm
 – Velocities up to 0.6 m/s
 – Coefficient of friction <0.04

• Soft-tissues allow it to function
 – Also represent its weakness

Polymer and Plastics in Medical Devices, SF 2013

Cambridge Polymer Group (9)
Image: www.blenderartists.org, stemcelldoc.wordpress.com
How to (re)build a knee

- Soft-tissues have complex structure
 - Work as hybrid structures
- **Cartilage**
 - Properties change from surface to bulk to transition to boney substrate
 - Provides unique shear response
- **Meniscus**
 - Cartilagenous structure supported by radial hoops
Engineered (and testing) soft-tissue repair

- **Problem:**
 - Low friction
 - High load
 - Load distribution
 - Displacement/shear tolerant
 - Soft-tissue preserving

<table>
<thead>
<tr>
<th></th>
<th>Cartilage</th>
<th>Meniscus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water content</td>
<td>[%]</td>
<td>68-85</td>
</tr>
<tr>
<td>Collagen</td>
<td>%</td>
<td>10-20</td>
</tr>
<tr>
<td>Proteoglycan</td>
<td>[%]</td>
<td>5-10</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>[MPa]</td>
<td>5-10</td>
</tr>
<tr>
<td>Tensile modulus</td>
<td>[MPa]</td>
<td>~10</td>
</tr>
<tr>
<td>UTS</td>
<td>[MPa]</td>
<td>2/5</td>
</tr>
<tr>
<td>Aggregate modulus</td>
<td>[MPa]</td>
<td>~0.7</td>
</tr>
<tr>
<td>Permeability x 10^{15}</td>
<td>[m^4/N.s]</td>
<td>~4</td>
</tr>
<tr>
<td>Friction Coeff</td>
<td>[]</td>
<td>0.1</td>
</tr>
<tr>
<td>Thickness</td>
<td>[mm]</td>
<td>0.5-5</td>
</tr>
</tbody>
</table>
Cartilage mimicking hydrogel

- Cartilage properties in part due to PGs
- Mimic structure with hydrolyzed PVAc hydrogel with dangling chains

Polymerization with crosslinker (PEG-DMA) and chains (PEG-MA)

Hydrolysis in methanol and KOH

Polymer and Plastics in Medical Devices, SF 2013

Cambridge Polymer Group (12)
Lubricity and Friction

- Low friction is a defining feature of cartilaginous joints
 - Impacted by disease level
 - Diseased synovial fluid loses lubricity

![Graph showing the relationship between COF and OA score](Image: Neu et al. 2010)

- Friction Coefficient
- Contact Pressure [MPa]
- OA Score

Polymer and Plastics in Medical Devices, SF 2013

Cambridge Polymer Group (13)

Image: Neu et al. 2010
Lubricity and Friction

- Correct structure generates superb lubricity
Reinforcement

Simple compression (strain/strain)

Fiber wound
Mechanical properties

Polymer and Plastics in Medical Devices, SF 2013

Cambridge Polymer Group (16)
Issues

- Use of polymers in soft-solids raises its own problems
- Permeability
 - Elutables major concern
 - Reaction biproducts
 - Access for media
- Mechanical testing complex
 - Viscoelastic solid implies rates critical
- Environment important
 - Humidity, salinity, pH
- Wear
 - How does one measure wear?
Thank you

Cambridge Polymer Group is a contract research laboratory specializing in polymers and their applications. We provide outsourced research and development, consultation and failure analysis as well as routine analytical testing and custom test and instrumentation design.

Cambridge Polymer Group, Inc.
56 Roland St., Suite 310
Boston, MA 02129
(617) 629-4400
http://www.campoly.com
info@campoly.com