The Impact of Aging Environment on the Oxidation of Stabilized and Unstabilized Crosslinked Polyethylenes

Jason Berlin, Gavin Braithwaite, John Knight*, Dirk Pletcher*, Alicia Rufner*

Cambridge Polymer Group, 56 Roland Street, Suite 310
Boston, MA 02129

*Zimmer, Inc., 1800 West Center Street
Warsaw, IN
Polyethylene as a bearing surface

• UHMWPE has become the standard counterface for total joint replacements
 – Modern materials give 20+ year wear
 – Biologically inert
 – Easily handled

• Potential oxidation is one of the few weaknesses
 – Excessive wear
 – Particle generation
 – Osteolysis and implant loosening

• New materials and formulations require validation
Oxidation in Polyethylene

- Modern highly crosslinked polyethylene has potential for oxidation if care is not taken
 - Residual free radicals from the crosslinking process remain active
 - Often described by the Bolland cycle
 - Can drive oxidation and degradation

Currier et al. JBJS 2007

Costa et al. Biomaterials 1998
Stabilized polyethylene

- Recent advances have begun to utilize oxidatively stabilized polyethylenes
 - Help reduce risk of oxidation
- Usually result from additional component added to system
 - α-tocopherol

- The addition of secondary species raises questions about how accelerated aging occurs and if physiological fluids interact with the materials differently
The importance of environment

- Costa reported in 2001 that the absorption of media species may also play a role
 - Synovial fluid a complex mixture
 - Cholesterol, proteins, fatty acids
 - Post-implant
 - Surface adsorbed proteins
 - Apolar materials diffused in to bulk
 - Cholesterol and esters, with fatty acids and squalene
 - Crosslinking does not prevent absorption
In vitro testing for oxidative stability

• Ambient, or “real-time” conditions
 – “shelf aging”
 • Room temperature and pressure
 – “fish tank”
 • Water, often at physiological temperatures, non-standard

• Accelerated
 – F 1980
 • Ambient atmosphere, 80 °C
 • “Q10”, 1 week is considered to be 1 year equivalent
 – F 2003
 • Five atmospheres, oxygen at 70 °C
Materials and environments

- **Materials**
 - Consolidated GUR 1050
 - γ-sterilized (25-37 kGy) “UHMWPE”
 - Vitamin E blended, consolidated and e-beam crosslinked “VE-PE”
 - 1 cm cubes cut from each consolidated puck

- **Environments**
 - ASTM F1980-99 (ambient atmosphere, 80 °C)
 - ASTM F2003-02 (5 atmospheres oxygen, 70 °C)
 - Oxygen 99.994% ultra high purity, Air Gas
 - Bovine Synovial Fluid (5 atmospheres oxygen, 60 °C)
 - BSF Animal Technologies Inc.
 - Oxygen 99.994% ultra high purity, Air Gas
 - Dissolved oxygen \sim4.41 mmol O$_2$/L H$_2$O (c.f. 1.07 mmol O$_2$/L H$_2$O)

- **Samples in BSF were refluxed against hexane for three days**
 - Verify that FTIR spectra due to immobile species
Bulk Oxidation

- UHMWPE BSF
- VE-HXPE BSF
- UHMWPE F1980
- VE-HXPE F1980
- UHMWPE F2003
- VE-HXPE F2003

Oxidation Index []

Accelerated Aging Time [weeks]
Antioxidant potential of VE-PE (OIT)

Oxidation Induction Time [min]

Aging Time [weeks]

- **ASTM F1980**
- **ASTM F2003**
- **BSF**
F1980 (ambient air)
F2003 (Oxygen Bomb)
Synovial Fluid

Oxidation Index, ASTM []

Depth [μm]

Cambridge Polymer Group
Surface Oxidation Spectra (UHMWPE)

Extraction: 3 days in hexane
BSF at 8 weeks, F2003 at 5 weeks, F1980 at 6 weeks
Bulk Oxidation Spectra (UHMWPE)

Extraction: 3 days in hexane
BSF at 8 weeks, F2003 at 5 weeks, F1980 at 6 weeks
Conclusions

• VE-PE exhibits excellent long-term stability in these accelerated environments
 – Evenly in highly demanding oxygen bomb, OI is negligible out to 24 weeks
• OIT suggests that stability is not lost as VE-PE is aged, even out to 24 weeks
 – However, very different measure of stability
• BSF is less demanding than oxygen bomb
 – Lower temperature
• BSF has different OI distribution in uncrosslinked materials
 – Bulk OI is higher – unique profile inconsistent with retrievals
 • Higher than F1980 (air) but lower than F2003 (bomb)
 – Surface OI falls off rapidly near surface
 • Possible indicator of protective effect of BSF constituents?
 – Oxidation profile still present after hexane extraction